
Heuristic Approaches for Heterogeneous Vehicle

Routing Problem with 2D Vector Demands

Taha Huzeyfe Akta³

January 11, 2022

Abstract

This study considers a routing problem with a heterogeneous �eet.

The �eet size is not limited, and demands are 2D vectors. Thus, this

study cares additional contraints for demands unlike the classical vehicle

routing problems. The problem is modeled mathematically, and a feasible

solution is obtained with Cplex solver. In this study, heuristics are built

to get close feasible solutions to Cplex in more reasonable time. Various

approaches are developed to investigate their behaviour and parameter

tuning routines. Two di�erent constructive heuristics are created, and

their e�ect to improvement heuristics as an initial solutions are analyzed.

There are also three di�erent improvement heuristics, to improve an initial

solution. Well-known �rst improvement and best imropovement strategies

are analyzed in the study. The stochastic approaches while accepting non-

improving solutions to prevent stuck are also investigated with simulated

annealing algorithm. Finally population based heuristics are also evalu-

ated. Two di�erent graph representation is built to solve the problem. A

genetic algorithm is also introduced for future studies but not completed.

These study contributes to see heuristic approaches to deal with unusual

constraints in an optimization problem. Experiments also show that why

heuristic approaches should be used to deal with such complex problems

that considerably close, even better, objective values are obtained in sig-

ni�cantly less time compared to an exact solver. Moreover, results also

show that tuning parameters has great importance and this study pro-

vides some pre-knowledge about parameters' e�ects on performance.

Keywords: heuristic algorithms, NP-hard, VRP, heterogeneous �eet

1 Introduction

Vehicle Routing Problem(VRP) have been investigated for long time and has
various types. VRP is simple assign vehicles to destinations according to an
objective. The book of Toth and Vigo(2014)[9] describes the task for the prob-
lem in a general form. They explain task as determination of routes to perform
partial or a complete tranfers with a vehicle �eet by minimizing the cost. The
solution is also explained as assignment of vehicles to requests in which sequence

1



for the feasibility.
Objective, vehicle, visit and customer restrictions determines the type of the
VRP. This problem represents delivery of goods in real life. There are terms in
VRP whose variation determines di�culty and type of a problem.

� Vehicles are used to transfer good from one place to another. Vehicles can
have a capacity that is not exceeded or be non-capacitated.

� Customers are distributed on map in VRP and they are tied with arcs.
Customers have also some amount of demand that should be delivered.

� Depot is the point where all goods are started to be distributed. Vehicles
start their transportation from the depot. There might be one or more
depots according to the problem. Vehicles are usually expected to turn
this location again after all goods are delivered.

� Arcs represents the ways between customers or depot. Arcs are usually
constant cost according to their distances.

Even though these are only main terms, many approaches have been made via
small restrictions or changes on these terms. Numerous variations of VRP,
that is called also as rich VRP's, have been introduced by many researchers.
The potential objective could be minimizing the total road cost, minimizing
the number of vehicles used and so on. Adding limitations like time window
will also restricts the objective value. Furthermore, more restriction can be
added to vehicles like a certain capacity that cannot be exceeded. These type of
variations produce new terms for VRP like capacitated vehicles, time window,
heterogeneous �eet etc. and are made use of according to real life requirements.

2 Problem Statement

This project aims to complicate the objective of the VRP by enabling various
types of vehicles that is relatively less studied in literature. Vehicle types refer
to di�erent capacity and �xed costs of them. This situation creates the trade-o�
between more loading capacity and cheaper transportation. Variation of vehi-
cles will harden the objective by enlarging the feasible space and so the search
area. The cost of arcs also depend upon the vehicles.
Another view of the project is its carriage restrictions. In typical vehicle routing
problems, only one dimension is used. This project will assume both volume
and weight restrictions on vehicles. This approaches the problem 2D bin packing
problem while items are also needed to be transferred. This constraint will also
approach the problem to a real life problem. Two-dimension can be considered
as weight and volume speci�es of items. Thus, this situation is more like a real
situation since only weight or volume is do not represent an item perfect any-
time. For instance, bales of straw is low dense material so its weight restriction
could easily be satis�ed while the o�ered vehicle does not have required volume
capacity. Reverse of this situation exists when the items are high dense.

2



3 Objectives

The main objective of the project is to search for meta-heuristic algorithm for
the problem de�ned. The algorithm should be able to �nd a point close enough
to optimal point. Desired mean absolute percentage error should be close to
zero and the algorithm also should be improved to give a signi�cant e�ect on
this metric.
Another criterion is time. Metaheuristics has to provide an huge time improve-
ment compared with exact algorithms. Thus, just a short time interval should
be used to reach desired complexity. Moreover, some traditional meta-heuristics
will also be tried to be overcome both in terms of time and error.
This project also aims to add new constraints related with the dimension of the
items. This change can also bring 2D bin-packing approach to VRP and so the
problem can be considered as various size bin packing problem with the objec-
tive of traveling sales problem. This approach will also be evaluated to observe
its e�ect on the objective and be used to improve e�ciency of the meta-heuristic.

4 Preliminary Literature Review

Vehicle routing problem is well known computer science and operational research
subject since more than half century. This project focuses only a sub-subject
of it and will try to increase its scope. Therefore, heterogeneous �eet vehicle
problems are mostly utilized resources for this project. Baldacci et al. (2008)[1]
gives a deep introduction to this subject and summarizes the related researches
up until release of the paper. This paper used as book chapter and a great
resource for the researchers. It is more like a lecture book therefore give all the
information needed categorize and formulate the problem. It has introduced
variety of mixed �eet VRP's by referring related works on subjects. Fleet size,
�xed cost and routing costs are stated as problem elements and determinant
factor of type of heterogeneous �eet VRP's.
Fleet size is placed in literature either as limited or unlimited. Fixed costs
mean the cost of using a vehicle which is ignored in some of the studies. Last
determining factor for problem type is routing cost. The paper also separates
group of researches whether routing costs are dependent to vehicle or not. This
project aims to also add dimension of items to these grouping �elds.
Golden et al.(1984)[2] is declared as where the mixed �eet vehicle problem de-
�ned �rst. There are many types of rich vehicle routing problems as stated
before, and that study presents a new view to the problem. It takes care of
classical methods to these newly generated problem. Instead of it is the �rst
paper about the subject, many heuristics are considered and evaluated brie�y
even though they are not deeply investigated. Liu and Shen (1999)[5] added
time window to this problem. They again enrich the the heterogeneous VRP
and experiments with su�cient set of hyper-parameters.
Heuristic for VRP can certainly inspire for this study and Toth and Vigo (2014)[9]
provide a book chapter for the subject. Their book is all about vehicle rout-

3



ing and allocate a complete chapter for usage of heuristic algorithms in VRP.
This chapter tells about the heuristic algorithms for the VRP and separates
them according to the groups of constructive, improvement and meta-heuristic
methods. The chapter does not state theoretical background of the methods
but many algorithms and approaches are addressed. Thus, the book includes a
deep library for the problem and its heuristics.
Schneider et al.(2014)[8] have put an modern approach to the problem and they
investigated electric vehicle routing problem. The key point of this approach
is that vehicles have limited battery capacity and has to visit recharging sta-
tions. This paper is crucial since it �rst takes environmental factors into account
in this subject. Thus, it also gives spotlights to new researchers. Hiermann et
al.(2016)[3] takes it one step further and provide mixed electric �eet to the prob-
lem. Vehicles also di�er in their battery size rather than just cost and capacity
in mixed electric �eet. Former study is more subject-oriented and give detailed
information about the subject since it introduces relatively new constraint to
the problem. On the other hand, latter study is like complementary of it since
it provides wide variety of experiments and investigates various approaches in
more complex problem.
Bin packing approach is another branch of that problem, it is also deeply in-
vestigated research area in operation research. Lodi et al.(1999)[6] investigates
heuristics and metaheuristics for di�erent 2D bin packing problems. It also
provides experiment results and comparision between algorithms. Then many
papers are also published about the subject. For instance, Hong et al.(2014)[4]
gives a hybrid heuristic method to this problem and Wei et al.(2013)[10] ex-
amines a di�erent objective. However, most studies are on orientation based
bin packing and so it does not appropriate for this since since the dimension
are thought as weight and volume for this project. These heuristics would be
helpful for future works to take intended study to one step forward. Pessoa et
al.(2021)[7] published a recent study that uses VRPSolver for a variety of bin
packing problem. This paper arranges the bin packing problem as VRP and
provides a exact solution. Any heuristic is not o�ered in this paper, but would
be helpful to investigate close views of two di�erent problems.

5 Mathematical Modeling

The described problem is an optimization problem. Therefore, objectives, deci-
sion variables and constraints are needed to be claimed clearly. Heterogeneous
�eet vehicle problems already have a clear formulation. First of all, decision
variables are needed to be de�ned. Golden et al (1984)[2] formulate their het-
erogeneous �eet vehicle routing problem for single dimensional items. However,
since experimented problem cares both weight and volume atributes then addi-
tional variables are required.
Decision variables;

� xkij is binary and states whether route between node i and node j is used

4



by vehicle type k.

� r1i is �ow variables for weight dimension in node i. It shows how much
weight reached by the vehicle that visits node i just after visiting node i.

� r2i is �ow variables for volume dimension in node i. It shows how much
volume reached by the vehicle that visits node i just after visiting node i.

Problem parameters;

� d1i shows weight of the load for node i.

� d2i shows volume of the load for node i.

� α1
k shows weight capacity of the vehicle type k.

� α2
k shows volume capacity of the vehicle type k.

� fk shows �xed cost of the vehicle type k.

� uk shows unit per distance cost of the vehicle type k.

� ckij shows the cost to go between node i and node j with the vehicle type
k.

Then, the objective is given below.

min

T∑
k=1

fk

n∑
j=1

xk0j +

T∑
k=1

n∑
i=0

n∑
j=0

ckijx
k
ij

The problem try to minimize both �xed and routing costs. Unlike Golden et al
(1984)[2], the unit costs also vary in this problem. There are T di�erent types
of vehicles in total. The index for the depot iz zero, so sum of xk0j actually show
how many vehicles are used. There are also constraints, and they depend on
the type of the mixed �eet VRP like whether there is a limit on the number
of vehicles or not. This project might also add new constraints so the vehicle
should satisfy 2D necessities instead of only one.

st

T∑
k=1

n∑
i=0

xkij = 1 (j = 1, · · · , n)

n∑
i=0

xkip −
n∑
j=0

xkpj = 0 (k=1,··· ,T ;
p=1,··· ,n)

5



rb0 = 0 (bε{1, 2})

rbj − rbi ≥ (dbj + abT )

T∑
k=1

xkij − abT
(i=0,··· ,n;
j=1,··· ,n;
bε{1,2})

rbj ≤
T∑
k=b

n∑
i=0

abkx
k
ij

(j=1,··· ,n;
bε{1,2})

xkij ∈ {0, 1} for all i, j, k

The additional constrainsts are added to the problem for second dimension. The
same constraints has to satis�ed for the second dimension.
The main purpose of this project is to create heuristic algorithm to solve an
NP-hard problem. A problem with such a complexity is so complex to build
up. Therefore, a meta-heuristic would be the best helpful to �nd relatively �ne
solutions without huge time and space requirements.

6 Data Description

The data consists of two main parts in the project which are customers and �eet
properties.

6.1 Customer Data

In a typical VRP, customers have two properties which are their coordinates
and demand. Coordinates of customers and depot are taken from the Duhamel
et al.[11]. This paper provides a set of HVRP samples and their solutions.
Di�erent than general concept, demands are 2D vectors, volume and weight, in
this project. Therefore, customers have one additional property for the demand.
For instance, if a customer is represented as [36,26,7,131], it means that customer
customer is located at [36,26] in a 2D coordinate plane and its demand's weight is
7 units, while volume is 131 units. Since the project has one additional property
unlike the others, weight and volume properties are just created. Hence, weights
are created as a random integer in a uniform plane of [5,30]. Similarly, volumes
are uniformly distributed between 50 and 250.
In this sense, two di�erent population size is used which are 20 and 50. Moreover,
three di�erent weight and volume properties is created for each population size.
Thus, six di�erent samples are obtained in total.

6.2 Fleet Data

n the heterogeneous VRP's, more than one vehicle types exist. In this problem
vehicles are not restricted with any time constraint or not limited with a certain
number. They only have a �xed cost and unit costs per distance unit. Like
the customer data, vehicles should have one additional property for both their

6



Table 1: Fleet Data
Fleet#1 Fleet#2 Fleet#3

[40,500,750,0.8] [40,500,750,0.8] [40,500,700,0.8]
[80,750,1000,1] [80,750,1000,1] [80,750,1100,1]

[100,1000,1250,1.4]

volume and weight constraints. A vehicle represented with four number which
are weight capacity, volume capacity, �xed cost and unit cost respectively. For
example, if a line like [40,500,750,0.8] is used to represent a vehicle, that means
vehicles can carry up to 40 units weight and 500 units volume. Its �xed cost,
that is cost of using one vehicle from this type, 750 and the cost for per distance
unit is 0.8.
Three di�erent �eets are created for the project. First �eet is created with
two vehicles in the way that their weight/volume capacity ratios are di�erent,
so both weight and volume become more likely to a limitation for di�erent
customers. Second �eet is created by adding a larger vehicle to the �eet to
observe whether algorithms are capable of decreasing cost by using additional
vehicle. The �xed cost di�erence between vehicles is increased for the last �eet
to see the e�ect of it, for example, whether algorithms can response by lowering
usage of more expensive vehicle. Furthermore, vehicles in a �eet are created in
a growing order, and neither weight nor volume capacity of a small truck can
exceed larger truck's weight or volume.
Finally, 18 di�erent samples are obtained with 3 di�erent samples for each three
�eet and two population size combinations. Each samples is represented like
(N=n, �eet#H, sample#d) where n is population size(20,50), H is the number
of �eet available(1,2,3), and d is the sample number(1,2,3) for this combination.

7 Benchmark

The described problem is an unfamiliar problem in the literature. Therfore,
unfortunetely there exists no heuristic solver that gives reliable and fast re-
sults. On the other hand, this is an optimization problem, and exact solvers
are available to be used. Cplex is used for the purpose. Mathematical model-
ing is already been shown in previos section, and so this model is implemented
into Cplex solver. Since the problem too complex, the solver is limited with
1000 seconds time limit. The results are presented in Appendix B.1. Results
are satisfactory but it is clear that Cplex does not use a smart search method,
probably because of that it evaluates every single branch. Therefore, it is run
with such long times.

7



8 Construction Heuristics

8.1 Cluster-�rst-route-second strategy

8.1.1 Steps

Constructive heuristic is used to get a feasible and relatively acceptable solu-
tion to the problem. Cluster-�rst-route-second approach is used to build the
algorithm. The codes are presented in appendix A.1 and this algorithm will be
called as Algorithm 1a by now.
Cluster
Clustering phase divides customers to cluster according to their distances to
each other. Total weight or volume required for the customers in any cluster
cannot exceed the weight or volume capacity of the largest vehicle.

1. Sort distances for each node pair in increasing order.

� dij : distance between customer i and j

2. For each pair(i,j) in the created list, there are three possibilities.

� both i and j are already in cluster.

� One of i or j is in a cluster but other is not. In this case, if un-
placed customer does not violate the maximum capacity constraints
of largest vehicle, place it into the same cluster.

� None of them is in a cluster. Thus, if they �t into a cluster without
exceeding any constraint place them in the same cluster. Otherwise,
build separate cluster for both of them.

3. If there is any customer who is not assigned to any cluster after iterations,
build a cluster that contains only that customer.

Route
In this process, routes tried to be generated for each cluster with minimum cost.
These routes have to start from the depot and visit all customers in the cluster
and return the depot. Below processes are executed for each cluster.

1. Assign one vehicle for each customer. Prefer the cheapest vehicle that is
capable.

2. Sort distances for each node pair(i,j) in increasing order.

3. For each pair(i,j ) in the list, if both i and j are whether �rst or last visited
nodes of their relevant vehicle, merge these two vehicles in a proper way.

4. Repeat these processes for each cluster.

8



8.1.2 Experiments and Discussion

As stated in the data description section, 18 di�erent samples are available.
Each sample is run 5 times, and so 90 experiments have been made for the
constructive heuristic in total. Since constructive heuristic is designed in deter-
ministic way results are all same for each sample except the time. Appendix
refexp-cfrs, show the summary of experiments. Average values are shown for
time, cost and total travel distance. Vehicles column shows that how many
vehicles from each type on average. For example, in the �rst line [2 4] shows
that smaller vehicle is used 2 times on average while larger one is needed 4
on average. Since, this is a deterministic algorithm all runs have exactly same
solution.
Experiments shows that increase is population size signi�cantly a�ect the run
time of the algorithm. When population size is increased 2.5 times from 20 to
50, algorithm time increases more than 200 times. This issue becomes more
problematic for larger size, thus simpler but faster ways would be tried to over-
come with it. Moreover, larger size solutions clearly cannot get close enough to
cplex solutions.
Another drawback of the constructive heuristic is it does not do any cost anal-
ysis. The di�erence between �eet#1 and �eet#2 exhibits this situation. Even
though �eet#2 has one additional vehicle, which should lower the cost since
alternatives increases, the cost increases for almost every case. Moreover, this
situation can also be observed by comparing �eet#1 and �eet#3 vehicle usages.
Event though, �xed cost of larger vehicle is magni�cently high in the �eet#3,
constructive algorithm could not response the this change and same vehicles are
used since cost analysis are not taken into consideration.

8.2 Closest Neighbor Heuristic

Closest neighborhood algorithm is well-known traveling salesman problem heuris-
tic. In this case, this heuristic is adapted to the vehicle routing problem. The
logic behind it is same that is to tie closer nodes to each other. However, the
additional constraints must also be satisti�ed for a VRP.

8.2.1 Steps

1. Find closest node to depot among unassigned nodes. Assign a new vehicle
to it.

2. Find closest node to end node that satis�es maximum vehicle capacity
constraints, and assign that node to as new end.

3. Repeat these steps until a vehicle cannot take any more node.

4. Repeat all steps until there is no assigned node.

This algorithm simply checks all nodes from closest to furthest and add them
to vehicle unless any capacity is not exceeded. This is a so greedy heuristic

9



and does not consider rather than closeness of the nodes. Codes are shown in
Appendix A.2. This algorithm will also be stated as Algorithm 1b.

8.3 Experiments and Discussion

5 runs are made for each sample as in the previous constructive heuristic. All
attributes like total distance, and vehicle counts are collected and evaluated.
Results are presented in appendix B.3. This heuristic is a deterministic, but 5
di�erent runs are made to observe how much time deviates over runs.
Experiments clearly show that closest neighborhood algorithm outperformed the
previous algorithm in terms of both performance and time. Population size does
not cause time to increase dramatically which gives advantage when an initial
solution is needed for improvement heuristics. Moreover, performance is always
better than previous heuristics. Then solution is even better than provided
benchmark for two samples that are N=50,�eet#2, sample#2 and sample#3.

9 Improvement Heuristics

Even though constructive heuristics provide solution, they are probably open
to improvements in most cases. Improvement heuristics will help to get more
qualitative solutions by using the output of constructive heuristics as an initial
solution.An initial solution obtained after the constructive heuristic. Improve-
ment heuristics are designed to search for improvement in the solution. Three
di�erent algorithms are used which are �rst improvement, best improvement,
and simulated annealing. Before diving into details, common methods used for
all improvement method are explained. These are the strategies that improve
the quality of a feasible solution, and they are all used for all the algorithms.
add/remove: This method selects a random customer from a random vehicle
and look for a place in another vehicle's route for it.

1. Select a random customer, c1, and random vehicle, v1, that does not visit
the selected customer.

2. Search for the closest customer c2 that v1 visits.

3. Look for c2 's neighborhoods in the v1 's routes. Take the one closer to c1,
assume it is c2'.

4. Remove c1 from its current place and put it between c2 and c2'.

inter-switch: This method selects two vehicles randomly, and two customers
of them and switch the place of them.

1. Randomly select two di�erent vehicles, v1 and v2.

2. Randomly select two customers from v1 and v2, they are c1 and c2 re-
spectively.

10



3. Switch c1 and c2. Thus, v1 visits c2, and v2 visits c1.

intra-switch: This method selects a random vehicle, and two customers from
that vehicle. Switch the place of these two customers.

1. Randomly select one vehicle, v1.

2. Randomly select two customers from v1, they are c1 and c2.

3. Switch c1 and c2.

mix: These method combines all their strategies and randomly perform one of
them in each iteration with equal chance.
These methods are evaluated for each improvement heuristic. They are used
as parameters, so only one of the methods has to selected for each run. These
parameters called as method for the remaining part of this section.

9.1 First Improvement Heuristic

9.1.1 Steps

First improvement heuristics uses one of the methods described above and per-
form the �rst improved option in each iteration. This heuristic will be called as
Algorithm 2a.

1. List all combinations for the given method. For instance, all customer
pairs one from v1 and one from v2 for the inter-switch case.

2. Shu�e all the combinations.

3. For each combination, check whether an improvement is made. If it does,
perform the action and pass to the next iteration.

4. Repeat until stopping criteria exists.

9.1.2 Experiments and Discussion

Stopping criteria is used as decision parameter for experiments. Non-improved
steps are evaluated for 15 and 30, that means that algorithm stopped if no
improvement has been made for last 15 or 30 steps. There are also four di�er-
ent methods, which are also other parameters. Moreover, two di�erent initial
solutions, that comes from two constructive heuristics, are also experimented.
Thus, four di�erent methods and two di�erent stopping criteria with two ini-
tial solutions are used for 18 di�erent samples. Each parameter combination
is run 5 times and so 1440 runs are taken in total. Solutions are presented in
Appendix B.4 for only three samples. First of all, when initial feasible solution
is better algorithm tends to give better results. Most best cases are reached
with Algorithm 1b. Moreover, stopping condition does not seem to create a
clear e�ect on results. When also considering the time stopping condition can
be one of two values. When methods are compared intra-switch method does

11



not contribute much to the constructive heuristic. This situation is the cause
of it is simply approach and does not a�ect vehicle types, and so their costs.
It only gains from unit costs, that does not have an important impact in these
cases. When other three methods are compared, it is clear that inter-switch
method for �rst improvement algorithm is somehow behind of other two meth-
ods. 'mix' and 'addremove' methods seems competitive when initial solution is
created with Algorithm 1a. Even though add/remove method beats 5 times of 6
cases on average when stopping condition is 15, mix method exhibit and crucial
average improvement when stopping condition becomes 30. However, when ini-
tial constructive is altered to Algorithm 1b, 'mix' method clearly works better
with it. Finally, parameters of �rst improvement heuristic can be set to mixed
search method and 30 non-improving steps as stopping condition together with
Algorithm 1b. This parameter generally works well, it even can outperform the
benchmark over than 5% improvement in the cost.

9.2 Best Improvement Heuristic

9.2.1 Steps

Similar to �rst improvement heuristic, best improvement heuristic make use
of every method and search for an improvement. Unlike the �rst improvement,
this heuristic evaluates all possible combinations and perform only the best one.
This algorithm will be called as Algorithm 2b for the report.

1. List all combination for the given method. For instance, all customer pairs
in a vehicle for the intra-switch case.

2. For each combination, check whether an improvement is made over the
best cost recorded. If it does, record the cost as best cost and also combi-
nation parameter.

3. After iteration comes to end, perform the best combination found. If no
better action is found, just skip the next iteration.

4. Repeat until stopping criteria exists.

9.2.2 Experiments and Discussion

Like the �rst improvement strategy, same stopping criteria are used with 4
di�erent methods. 5 runs are taken for each 18 samples with these methods and
stopping conditions. Finally, 720 total run is obtained. Experiment results are
summarized in Appendix B.5 for same three samples.
Stopping condition shows di�erent e�ect for di�erent initial solutions. When
stopping condition is increased algorithm with initial solution Algorithm 1b gives
considerably better results for mix and add/remove search methods. Population
size is also another factor that change the e�ect of the stopping condition.
When looking from the methods sense, situation is similar to �rst improvement
heuristic. Intra-switch method does not have even 1% e�ect on the objective.

12



Standard deviation is almost zero, which means that algorithm is stuck in similar
points. From di�erent view, this situation shows that route strategy for the
constructive heuristics is good enough that even best improvement strategy
cannot �nd any better points.

9.3 Simulated Annealing

9.3.1 Steps

Simulated annealing uses a stochastic approach while accepting a solution un-
like the previous improvement algorithms. If the searched point provides an im-
provement on the problem, it is accepted. If it does not contribute to objective,
then it can also be accepted with a probability. As the algorithm approaches to
end, it more unlikely to accept non-improving solution. This algorithm will be
called as Algorithm 2c.

1. Set temperature, T,

2. Select a random combination for the given method. For instance, take
one random customer c1 and one random vehicle v1 for the add/remove
method.

3. . Calculate the new cost if the randomly selected action is performed. For
example, remove c1 from its current vehicle and put into v1.

4. If new cost is better than the current, then accept it and execute the
action.

5. If calculated cost is worse than current, calculate acceptance probability:

� acceptance probability = exp((current cost - calculated cost)/current
Temperature)

6. If acceptance probability exists, then accept the new solution.

7. Perform steps 2 to 6 until given number of epochs.

8. Update temperature. Cooling parameter is used to update temperature.

� temperature = temperature * cooling parameter

9. Repeat until stopping criteria exists.

9.3.2 Experiments and Discussion

There are various parameters for the simulated annealing that are initial tem-
perature, stopping criterion, cooling parameter, number of epochs, acceptance
criterion etc. In this project number of epochs and cooling parameter are ex-
perimented. Limited resources prevent running each combination, but su�cient
data is collected. Experimented parameters are determined on the way. For

13



instance, two is added as epoch length hyper-parameter �rst, but then it is not
used since its performance is not competitive. In this sense, these combinations
of paramters are performed with four di�erent search method.
initial solution, cooling parameter, max epochs = (Alg1a, 0.5, 2), (Alg1a, 0.5,
10), (Alg1a, 0.7, 5), (Alg1a, 0.7, 10), (Alg1b, 0.7, 5), (Alg1b, 0.7, 10), (Alg1b,
0.9, 5), (Alg1b, 0.9, 10)
Four methods are also run for each parameter set, and so 32 combinations are
obtained. 5 runs are taken for each possibility and so 2880 total run is taken
for 18 samples. Appendix B.6 shows a summary of results for selected three
samples.
The initial solution is not as determinant as previos methods, it is still again an
e�ective parameter to determine the quality of the solution. This situation is
probably because of the Algorithm1b is clearly much better than the Algorithm
1a.
Experiments also show that parameters should be con�gurated according to
population properties. For instance, while smaller instances like to be cooled
slower, larger instances can be preferred with a bit faster coolings. Like this
example, larger �eets also generally works better with lower cooling but this
assumption is not as strong as previous. In general, more iterations with higher
cooling rate and more epochs give better results and requires more time, but
population properties are also crucial to set hyper-parameters.

10 Population Based Heuristics

Population based heuristics rely on cooperative behaviour of multiple solutions.
Keeping diversi�cation with some stochastic approaches while searching for bet-
ter feasible points is the main logic behind it. In this study, two di�erent types
of ant colonies and a genetic algorithm for decomposed parts of the problem are
implemented.

10.1 Node-to-node Ant Colony

Ant colony optimization is a good way to search solutions for routing problems
since they are easy to present in graph structure. In this study two di�erent
representations are tried. This �rst algorithm is a classical approach that draw
an arc between nodes.
Figure 10.1 illusturates a small graph representation of the algorithm for three
nodes. The thick red lines shows the route of an ant, where dotted lines are other
feasible arcs that the ant would visit. Thus, the solution comes from that ant
will be 0-1-0-3-2-0. This solutions tells that the route for node#1 di�ers from
node#2 and node#3. Thus, �rst vehicle visits only node#1, while a di�erent
second vehicle visit node#3 and node#2 respectively. Vehicle types are chosen
according to smallest type that satisfy the related routes capacity requirements.

14



Figure 1: Graph representation of node-to-node ant colony algorithm

10.1.1 Steps

Graph representation is already stated. Pheromones level updates and decision
criterion are most crucial part. These parameters are determined after a set
of experiments. This algorithm will be named as Algoritm 3a for rest of this
study. The related code �le is available in Appendix A.5.

1. Set population.

2. Set initial setup for pheromones.

3. For each ant;

(a) Start from the depot, so current node is node 0.

(b) Move a feasible next node from the current node according to pheromone
levels. More pheromone levels are favored.

(c) Repeat these steps until all nodes are visited.

4. Update pheromone levels according to the objective value, then evapora-
tion is made.

� pheromones+ = 1/ logn totalCost

� pheromones∗ = evaporationRate

5. Repeat all until stopping criterion exists.

10.1.2 Experiments and Discussion

There are many paremeter to be tuned for the algorithm. It is hard to opti-
mize all of them, but some pre-experiments are also performed to decide which

15



parameters to be tuned and which values should be used. Evaporation rate is
�xed to 0.8, and number of ants in the population is selected as 30 after all.
Moreover, stopping criterion exists after 20 non-improving steps. Weight deter-
mination of routes seems crucial, and so related parameters are experimented.
First of all, two di�erent �tness function is determined while selecting routes.
These are arithmetic and geometric functions.

� ArithmeticF itness = α ∗ pheromones(i, j) + β ∗ (1/distance(i, j)

� GeometricF itness = pheromones(i, j)α ∗ (1/distance(i, j)β

These function determines how likely a [i,j route will be selected. The probabil-
ity of selecting a node after visiting node i is determined according to normalized
values of above function. Both functions have also α and β coe�cients, which
are other parameter. α is experimented with values 1 and 1.5, while β is also
tested for 0 additional to same values.
Ant colony algorithm was expected to take longer times since it is population
based approach, so many feasible solutions are evaluated at a time. The struc-
ture, on the other hand, is appropriate to multi-process runnings, so the time
can actually be decreased dramatically to more accetable values.
Even though, its much time and space requirement, results are not so satis-
factory. Ant colony as many parameters to consider. Thus, more experiments
should be executed to covnerge better parameter values.

10.2 Couple-to-couple Ant Colony

This is again an ant colony heuristic, but a di�erent approach has given a try.
Node presentations are changed to node couples in this algorithm. Thus, a node
is represented by two customer index that are not equal like [i,j]. This approach
has more knowledge, since tying two nodes shows three customers that are
visited concecutively. This knowledge, on the other hand, requires more space
and more nodes. The graph representation is shown in Figure 10.2.

16



Figure 2: Graph representation of couple-to-couple ant colony algorithm

10.2.1 Steps

The steps are same as the previous ant colony model. In this case, di�erence
is based on graph representation, so heurictic approach is added appropriate to
structure. This algorithm will be called as Algorithm 3b.

17



10.2.2 Experiments and Discussion

Parameter settings are also same with the previous algorithm. Solutions are
hard distinguish, are outcome is similar that more investigation is needed on
parameter settings. Time is similar with Algorithm 3a, and performances de-
pend on the sample.

10.3 Genetic Algorithm for Decomposed Parts

This algorithm divide problem into two sub-problems. First part is assigning
nodes to vehicles. This part is actually a bin-packing problem and try to mini-
mize total �xed costs. The problem with relatively high �xed costs, like in this
study, cen prefer fewer vehicles usage instead of traveling less. Thus, this �rst
part has importance that search for minimizing the �xed costs exist here.
On the other hand, vehicle assignment problem will most probably have multiple
optimals when routing cost is ignored. Therefore, an auxiliary �tness function
can be used in this stage. The purpose behind using a population based heuris-
tic also comes to fore, that many individuals are aimed to produced with similar
number of vehicle usages with minimal costs, and their routing phase will be
determinant to select best option.
Fitness value should be also good prototype of routing phase in order to achieve
qualitative solutions. However, this is not an easy issue, and needed to be in-
vestigated deeply. An simple function is used for now, but this function is also
aimed to be improved. This simple function just consider �xed costs and favors
individual with bins that has fewer items in itself.
After deciding clusters, routing phase is the only remaining part. The work till
now only considers best individual obtained by genetic algorithm, and routing
is the same as in Algorithm 1a. It is used since is ready to go, but there would
be better routing ideas even though they were not implemented yet. One of the
idea is that getting best some number of solution from genetic algorithm, and
building a new genetic algorithm for the routing part. This seems a nice idea,
because more indivuals are made of use in this situation, as stated above.
Another option might be using an exact solver like Concorde for the remain-
ing part, but the quality, and so the �tness function, of the genetic algorithm
should be more reliable. One instance ha a �nite number of routes and they are
smaller compared with all population. Thus, using exact solvers might not be
so costly. However, these are all experimental issues, so they are needed to be
implemented.

10.3.1 Steps

Steps of the genetic algorithm that is implemented up until now is listed below.
However, this is not a �nal work and has many lacks. There is no cross-over, it
is worth to try. The development ideas has also stated, so they can also change
the steps of the algorithm. This is just a main skeleton.

1. A random feasible generation is created.

18



2. Calculate �tness values.

3. Elites directly goes to next generation

4. Tournament is made for remaining of the next generation. Best individual
continues

5. Mutation is executed.

6. All steps are executed until stopping criterion exists.

7. Best solution is used to build cluster.

8. A route is built with the same approach in Algorithm 1a.

10.3.2 Experiments and Discussion

This algorithm is just in its baby steps, so there are not su�cient experiments
to reach a conclusion. Discussion about building steps are made at the begining
of the section. It can be stated that with a few experimens, genetic algorithm
works �ne, because clustering phase compared to Algorithm 1a is much better.

11 Conclusion

� Initial solution for improvement heuristics are matter to qualitative solu-
tions. Two di�erent initial solution highly e�ective on the �nal solution.

� Intra-route method is not an e�ective search method for whole problem,
but it is bene�cial when used with other search methods together like
mixed method or variable neighborhood search.

� Mixed methods usually the one that gives the best solution. Its run time
is also higher, but it is probably because its search space is larger.

� The required time for the best improvement method is a bit higher than
other improvement methods. This issue can become more problematic in
larger datasets.

� Simulated annealing also performs better in the small size populations.
However, when population size increases, other improvement heuristics
can be competitive.

� Run times of simulated annealing and �rst improvement heuristics are
reasonable that multiple runs can be taken to reach better solutions.

� Vehicle assignments are more determinant than routing phase.

� Even the cplex solver could not �nd optimal, it reaches acceptable solu-
tions so fast but its improvement is not as good. Thus, getting multiple
short runs and best of them, instead of getting one long run could give
better results.

19



� Performances and deviations show that parameter optimization is a crucial
steps. A lot of pre-experiments are run to observe which parameter sets
should be tested with multipl runs.

� Populations based heuristics have many parameters to be evaluated. All
these are should be considered to improve solution quality.

� Solution quality is highly dependent to samples, so it would be a great work
to �nd dynamic parameter settings for di�erent samples. One example is
the �tness function used in ant colony heuristics, that take population size
into account.

� Population based heuristics needs more attention to structure of the al-
gorithm like �tness function, weight determination etc. These are part
highly important to keep both diversi�cation and convergence on stand.
Ant colonies, for instance, are tried to with reinforcement options but a
logarithmic function has carried objectives to desired levels.

� Simulated annealing seems working better than population based heuris-
tics, but population based heuristics have actually many design issues to
consider. Thus, population based algorithms are more open to improve-
ments and less deviated solutions.

11.1 Future Studies

In this study, many alternative heuristics are explained for this new type of
vehicle routing problem. These experiments are a good way to see behaviours
of di�erent approaches. On the other hand, reaching a single best heuristic
would be a great work. Thus, as stated in previous sections, buiding a genetic
algorithm whose properties are set speci�c to this problem is improvement area.
Even though experimented results and heuristics are competitive with cplex
solver, and simulated annealing can outperform it in more reasoble times, this
solution still can be improved. Population based heuristics coomes to fore in
the sense, because many feasible solutions are evaluated at a time and it is more
suitable for multi-processing. There are many improvement points in the genetic
algorithm from �tness function to mutation methods. They are all needed to
be evaluated and experimented.

20



Appendices

A Code Files

A.1 ConstructiveHeuristic.py

import numpy as np

from copy import copy, deepcopy

class ConstructiveHeuristic:

def __init__(self, CustomerManager, Fleet):

self.cm = deepcopy(CustomerManager)

self.fleet = deepcopy(Fleet)

self.clusters =dict()

self.totalClusterDemands = dict()

def run(self, isPrint=False):

self.BuildClusters()

self.BuildRoutes()

if isPrint:

self.printClusters()

self.fleet.printVehicleRoutes()

return self.fleet

def BuildClusters(self):

ClusterNumber = 0

arcs = self.cm.sortArcs()

for arc in arcs:

if arc[0] == 0 or arc[1] == 0:

continue

elif arc[0] in self.clusters.keys() and arc[1] in self

.clusters.keys():

continue

elif arc[0] in self.clusters.keys():

cCluster = self.clusters[arc[0]]

if (self.totalClusterDemands[cCluster][0]+self.cm.

get_demands(arc[1])[0]<=self.fleet.maxCapacity

()[0]) \

& (self.totalClusterDemands[cCluster][1]+self.cm.

get_demands(arc[1])[1]<=self.fleet.maxCapacity

()[1]):

21



self.totalClusterDemands[cCluster][0] += self.

cm.get_demands(arc[1])[0]

self.totalClusterDemands[cCluster][1] += self.

cm.get_demands(arc[1])[1]

self.clusters[arc[1]] = cCluster

continue

elif arc[1] in self.clusters.keys():

cCluster = self.clusters[arc[1]]

if (self.totalClusterDemands[cCluster][0]+self.cm.

get_demands(arc[0])[0]<=self.fleet.maxCapacity

()[0]) \

& (self.totalClusterDemands[cCluster][1]+self.cm.

get_demands(arc[0])[1]<=self.fleet.maxCapacity

()[1]):

self.totalClusterDemands[cCluster][0] += self.

cm.get_demands(arc[0])[0]

self.totalClusterDemands[cCluster][1] += self.

cm.get_demands(arc[0])[1]

self.clusters[arc[0]] = cCluster

continue

elif(self.cm.get_demands(arc[0])[0]+self.cm.get_

demands(arc[1])[0]<=self.fleet.maxCapacity()[0]) \

& (self.cm.get_demands(arc[0])[1]+self.cm.get_demands(

arc[1])[1]<=self.fleet.maxCapacity()[1]):

ClusterNumber += 1

self.clusters[arc[0]] = ClusterNumber

self.clusters[arc[1]] = ClusterNumber

self.totalClusterDemands[ClusterNumber] = [self.cm.

get_demands(arc[0])[0]+self.cm.get_demands(arc

[1])[0], \

self.cm.get_

demands(

arc[0])

[1]+self

.cm.get_

demands(

arc[1])

[1]]

else:

ClusterNumber +=1

self.clusters[arc[0]] = ClusterNumber

self.totalClusterDemands[ClusterNumber] = [self.cm.

get_demands(arc[0])[0], self.cm.get_demands(arc

[0])[1]]

ClusterNumber +=1

self.clusters[arc[1]] = ClusterNumber

22



self.totalClusterDemands[ClusterNumber] = [self.cm.

get_demands(arc[1])[0], self.cm.get_demands(arc

[1])[1]]

def printClusters(self):

for key in self.totalClusterDemands:

nodes = self.getCluster(key)

print("Cluster #" +str(key) + " has " + str(self.

totalClusterDemands[key][0]) + \

" kg and " + str(self.totalClusterDemands[key

][1]) + " liters of total demands, and for

customers: " \

+ str(nodes))

def getCluster(self, cluster):

nodes = []

for key2 in self.clusters:

if(self.clusters[key2]==cluster):

nodes.append(key2)

return nodes

def BuildRoutes(self):

for key, demand in self.totalClusterDemands.items():

customers = self.getCluster(key)

for customer in customers:

self.fleet.assignVehicle(self.cm, [customer])

arcs = self.cm.sortArcs(customers)

for arc in arcs:

if self.fleet.isLast(customers[arc[0]]) & self.

fleet.isFirst(customers[arc[1]]):

vehicle1 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[0]])

vehicle2 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[1]])

if vehicle1 != vehicle2:

self.fleet.mergeVehicles(vehicle1, vehicle2,

customers[arc[0]], self.cm, reverse=

False)

del vehicle1, vehicle2

23



elif self.fleet.isLast(customers[arc[1]]) & self.

fleet.isFirst(customers[arc[0]]):

vehicle1 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[1]])

vehicle2 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[0]])

if vehicle1 != vehicle2:

self.fleet.mergeVehicles(vehicle1, vehicle2,

customers[arc[1]], self.cm, reverse=

False)

del vehicle1, vehicle2

elif self.fleet.isLast(customers[arc[0]]) & self.

fleet.isLast(customers[arc[1]]):

vehicle1 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[0]])

vehicle2 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[1]])

if vehicle1 != vehicle2:

self.fleet.mergeVehicles(vehicle1, vehicle2,

customers[arc[0]], self.cm, reverse=

True)

del vehicle1, vehicle2

elif self.fleet.isFirst(customers[arc[0]]) & self.

fleet.isFirst(customers[arc[1]]):

vehicle1 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[0]])

vehicle2 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[1]])

if vehicle1 != vehicle2:

self.fleet.mergeVehicles(vehicle1, vehicle2,

0, self.cm, reverse=True)

del vehicle1, vehicle2

24



A.2 ClosestNeighborInitializer.py

import numpy as np

import random

from copy import copy, deepcopy

class ClosestNeighborInitializer:

def __init__(self, CustomerManager, Fleet):

self.cm = deepcopy(CustomerManager)

self.fleet = deepcopy(Fleet)

def run(self, isPrint=False):

n = self.cm.getCustomers()

C = self.fleet.maxCapacity()

customers = list(range(1,n))

while(len(customers)>0):

tempC = self.cm.findClosest(0, customers)

self.fleet.assignVehicle(self.cm, [tempC])

veh = self.fleet.getAssignedVehicletoCustomer(tempC)

customers.remove(tempC)

neigbList = customers.copy()

while(len(neigbList)>0):

neig = self.cm.findClosest(tempC, neigbList)

if (self.fleet.vehicles[veh].getLoad()[0]+self.cm.

get_demands(neig)[0]<=self.fleet.maxCapacity()

[0]) and \

(self.fleet.vehicles[veh].getLoad()[1]+self.cm.

get_demands(neig)[1]<=self.fleet.

maxCapacity()[1]):

self.fleet.vehicles[veh].addCustomer(neig,

tempC ,self.cm, justAfter=True)

tempC = neig

customers.remove(tempC)

neigbList.remove(neig)

if isPrint:

self.fleet.printVehicleRoutes()

return self.fleet

25



A.3 ImprovementHeuristic.py

import random

import itertools

from copy import copy, deepcopy

class ImprovementHeuristic:

def __init__(self, CustomerManagement, fleet):

self.cm = deepcopy(CustomerManagement)

self.fleet = deepcopy(fleet)

def run(self, strategy='FirstImprovement', method='mix',

stopping=15,isPrint=False):

if strategy=='FirstImprovement':

self.FirstImprovementStrategy(stopping=stopping,

method=method)

elif strategy=='BestImprovement':

self.BestImprovementStrategy(stopping=stopping, method

=method)

else:

raise ValueError("Unknown strategy")

if isPrint:

self.fleet.printVehicleRoutes()

return self.fleet

def FirstImprovementStrategy(self, method, stopping):

curr_cost = self.fleet.totalCost()

nonImprovedSteps = 0

if method == 'mix':

while(nonImprovedSteps < stopping):

vehicles = self.fleet.vehicleList()

strategy = random.randint(0,2)

if strategy == 0:

tempVeh = random.choice(vehicles)

customerList = self.fleet.

getAssignedCustomerstoVehicle(tempVeh)

switchCombinations = list(itertools.

combinations(customerList,2))

random.shuffle(switchCombinations)

for couple in switchCombinations:

if self.fleet.EstimateIntraSwitchCost(

tempVeh, couple[0], couple[1], self.cm)<

curr_cost:

26



self.fleet.IntraSwitchCustomers(tempVeh,

couple[0], couple[1], self.cm)

curr_cost = self.fleet.totalCost()

nonImprovedSteps = 0

break

nonImprovedSteps +=1

elif strategy == 1:

tempVeh1, tempVeh2 = random.sample(vehicles,2)

customerList1 = self.fleet.

getAssignedCustomerstoVehicle(tempVeh1)

customerList2 = self.fleet.

getAssignedCustomerstoVehicle(tempVeh2)

switchCombinations = []

for customer1 in customerList1:

for customer2 in customerList2:

switchCombinations.append([customer1,

customer2])

random.shuffle(switchCombinations)

for couple in switchCombinations:

if self.fleet.EstimateInterSwitchCost(

tempVeh1, tempVeh2, couple[0], couple

[1], self.cm)<curr_cost:

self.fleet.InterSwitchCustomers(tempVeh

1, tempVeh2, couple[0], couple[1],

self.cm)

curr_cost = self.fleet.totalCost()

nonImprovedSteps = 0

break

nonImprovedSteps +=1

else:

selVeh = random.choice(vehicles)

selCust = random.choice(self.fleet.

getAssignedCustomerstoVehicle(selVeh))

random.shuffle(vehicles)

for VehicleToAdd in vehicles:

if VehicleToAdd == selVeh:

continue

estimatedCost = self.fleet.estimateRemoveAdd

(selCust, VehicleToAdd, self.cm)

if estimatedCost < curr_cost:

self.fleet.RemoveAdd(selCust,

VehicleToAdd, self.cm)

curr_cost = self.fleet.totalCost()

nonImprovedSteps = 0

break

nonImprovedSteps +=1

27



elif method == 'addremove':

while(nonImprovedSteps < stopping):

vehicles = self.fleet.vehicleList()

selVeh = random.choice(vehicles)

selCust = random.choice(self.fleet.

getAssignedCustomerstoVehicle(selVeh))

random.shuffle(vehicles)

for VehicleToAdd in vehicles:

if VehicleToAdd == selVeh:

continue

estimatedCost = self.fleet.estimateRemoveAdd(

selCust, VehicleToAdd, self.cm)

if estimatedCost < curr_cost:

self.fleet.RemoveAdd(selCust, VehicleToAdd,

self.cm)

curr_cost = self.fleet.totalCost()

nonImprovedSteps = 0

break

nonImprovedSteps +=1

elif method == 'inter-switch':

while(nonImprovedSteps < stopping):

vehicles = self.fleet.vehicleList()

tempVeh1, tempVeh2 = random.sample(vehicles,2)

customerList1 = self.fleet.

getAssignedCustomerstoVehicle(tempVeh1)

customerList2 = self.fleet.

getAssignedCustomerstoVehicle(tempVeh2)

switchCombinations = []

for customer1 in customerList1:

for customer2 in customerList2:

switchCombinations.append([customer1,

customer2])

random.shuffle(switchCombinations)

for couple in switchCombinations:

if self.fleet.EstimateInterSwitchCost(tempVeh1,

tempVeh2, couple[0], couple[1], self.cm)<

curr_cost:

self.fleet.InterSwitchCustomers(tempVeh1,

tempVeh2, couple[0], couple[1], self.cm)

curr_cost = self.fleet.totalCost()

nonImprovedSteps = 0

break

nonImprovedSteps +=1

elif method == 'intra-switch':

vehicles = self.fleet.vehicleList()

tempVeh = random.choice(vehicles)

28



customerList = self.fleet.

getAssignedCustomerstoVehicle(tempVeh)

switchCombinations = list(itertools.combinations(

customerList,2))

random.shuffle(switchCombinations)

for couple in switchCombinations:

if self.fleet.EstimateIntraSwitchCost(tempVeh,

couple[0], couple[1], self.cm)<curr_cost:

self.fleet.IntraSwitchCustomers(tempVeh,

couple[0], couple[1], self.cm)

curr_cost = self.fleet.totalCost()

nonImprovedSteps = 0

break

nonImprovedSteps +=1

else:

raise ValueError("Unknown method")

def BestImprovementStrategy(self, method, stopping):

bestCost = self.fleet.totalCost()

nonImprovedSteps = 0

if method == 'mix':

while(nonImprovedSteps < stopping):

vehicles = self.fleet.vehicleList()

bestCouple =None

strategy = random.randint(0,2)

if strategy == 0:

tempVeh = random.choice(vehicles)

customerList = self.fleet.

getAssignedCustomerstoVehicle(tempVeh)

switchCombinations = list(itertools.

combinations(customerList,2))

for couple in switchCombinations:

if self.fleet.EstimateIntraSwitchCost(

tempVeh, couple[0], couple[1], self.cm)<

bestCost:

bestCouple = couple

bestCost = self.fleet.

EstimateIntraSwitchCost(tempVeh,

29



couple[0], couple[1], self.cm)

nonImprovedSteps = 0

if bestCouple is not None:

self.fleet.IntraSwitchCustomers(tempVeh,

bestCouple[0], bestCouple[1], self.cm)

else:

nonImprovedSteps +=1

elif strategy== 1:

tempVeh1, tempVeh2 = random.sample(vehicles,2)

customerList1 = self.fleet.

getAssignedCustomerstoVehicle(tempVeh1)

customerList2 = self.fleet.

getAssignedCustomerstoVehicle(tempVeh2)

switchCombinations = []

for customer1 in customerList1:

for customer2 in customerList2:

switchCombinations.append([customer1,

customer2])

for couple in switchCombinations:

if self.fleet.EstimateInterSwitchCost(

tempVeh1, tempVeh2, couple[0], couple

[1], self.cm)<bestCost:

bestCouple = couple

bestCost = self.fleet.

EstimateInterSwitchCost(tempVeh1,

tempVeh2, couple[0], couple[1], self

.cm)

nonImprovedSteps = 0

if bestCouple is not None:

self.fleet.InterSwitchCustomers(tempVeh1,

tempVeh2, bestCouple[0], bestCouple[1],

self.cm)

else:

nonImprovedSteps +=1

else:

selVeh = random.choice(vehicles)

selCust = random.choice(self.fleet.

getAssignedCustomerstoVehicle(selVeh))

for VehicleToAdd in vehicles:

if VehicleToAdd == selVeh:

continue

estimatedCost = self.fleet.estimateRemoveAdd

30



(selCust, VehicleToAdd, self.cm)

if estimatedCost < bestCost:

bestCouple = VehicleToAdd

bestCost = estimatedCost

nonImprovedSteps = 0

if bestCouple is not None:

self.fleet.RemoveAdd(selCust, bestCouple,

self.cm)

else:

nonImprovedSteps +=1

elif method == 'addremove':

while(nonImprovedSteps < stopping):

vehicles = self.fleet.vehicleList()

bestCouple =None

selVeh = random.choice(vehicles)

selCust = random.choice(self.fleet.

getAssignedCustomerstoVehicle(selVeh))

for VehicleToAdd in vehicles:

if VehicleToAdd == selVeh:

continue

estimatedCost = self.fleet.estimateRemoveAdd(

selCust, VehicleToAdd, self.cm)

if estimatedCost < bestCost:

bestCouple = VehicleToAdd

bestCost = estimatedCost

nonImprovedSteps = 0

if bestCouple is not None:

self.fleet.RemoveAdd(selCust, bestCouple, self.

cm)

else:

nonImprovedSteps +=1

elif method == 'inter-switch':

while(nonImprovedSteps < stopping):

vehicles = self.fleet.vehicleList()

bestCouple =None

tempVeh1, tempVeh2 = random.sample(vehicles,2)

customerList1 = self.fleet.

getAssignedCustomerstoVehicle(tempVeh1)

customerList2 = self.fleet.

getAssignedCustomerstoVehicle(tempVeh2)

switchCombinations = []

for customer1 in customerList1:

for customer2 in customerList2:

31



switchCombinations.append([customer1,

customer2])

for couple in switchCombinations:

if self.fleet.EstimateInterSwitchCost(tempVeh1,

tempVeh2, couple[0], couple[1], self.cm)<

bestCost:

bestCouple = couple

bestCost = self.fleet.

EstimateInterSwitchCost(tempVeh1,

tempVeh2, couple[0], couple[1], self.cm)

nonImprovedSteps = 0

if bestCouple is not None:

self.fleet.InterSwitchCustomers(tempVeh1,

tempVeh2, bestCouple[0], bestCouple[1],

self.cm)

else:

nonImprovedSteps +=1

elif method == 'intra-switch':

while(nonImprovedSteps < stopping):

vehicles = self.fleet.vehicleList()

bestCouple =None

tempVeh = random.choice(vehicles)

customerList = self.fleet.

getAssignedCustomerstoVehicle(tempVeh)

switchCombinations = list(itertools.combinations(

customerList,2))

for couple in switchCombinations:

if self.fleet.EstimateIntraSwitchCost(tempVeh,

couple[0], couple[1], self.cm)<bestCost:

bestCouple = couple

bestCost = self.fleet.

EstimateIntraSwitchCost(tempVeh, couple

[0], couple[1], self.cm)

nonImprovedSteps = 0

if bestCouple is not None:

self.fleet.IntraSwitchCustomers(tempVeh,

bestCouple[0], bestCouple[1], self.cm)

else:

nonImprovedSteps +=1

32



A.4 SimulatedAnnealing.py

from copy import copy, deepcopy

import math

import random

class SimulatedAnnealing:

def __init__(self, CustomerManagement, fleet):

self.cm = deepcopy(CustomerManagement)

self.fleet = deepcopy(fleet)

def run(self, method='intra-switch', initialTemp=1000, minTemp

=0.1, coolingP=0.5, maxEpoch=2, isPrint=False):

bestCost = self.fleet.totalCost()

initialTemp = initialTemp

minTemp = minTemp

coolingP = coolingP

currentTemp = initialTemp

if method == 'mix':

while(currentTemp>minTemp):

epoch=0

while(epoch<=maxEpoch):

vehicles = self.fleet.vehicleList()

strategy = random.randint(0,2)

if strategy == 0:

tempVeh = random.choice(vehicles)

customerList = self.fleet.

getAssignedCustomerstoVehicle(tempVeh)

if len(customerList)>=2:

customer1, customer2 = random.sample(

customerList,2)

else:

continue

estimatedCost = self.fleet.

EstimateIntraSwitchCost(tempVeh,

customer1, customer2, self.cm)

if estimatedCost < bestCost:

self.fleet.IntraSwitchCustomers(tempVeh,

customer1, customer2, self.cm)

bestCost = self.fleet.totalCost()

else:

33



acceptProb = (bestCost-estimatedCost)/

currentTemp

acceptProb = math.exp(acceptProb)

randVar = random.random()

if (acceptProb>randVar):

self.fleet.IntraSwitchCustomers(

tempVeh, customer1, customer2,

self.cm)

bestCost = self.fleet.totalCost()

elif strategy == 1:

vehicles = self.fleet.vehicleList()

tempVeh1, tempVeh2 = random.sample(vehicles

,2)

customer1 = random.choice(self.fleet.

getAssignedCustomerstoVehicle(tempVeh1))

customer2 = random.choice(self.fleet.

getAssignedCustomerstoVehicle(tempVeh2))

estimatedCost = self.fleet.

EstimateInterSwitchCost(tempVeh1,

tempVeh2, customer1, customer2, self.cm)

if estimatedCost < bestCost:

self.fleet.InterSwitchCustomers(tempVeh

1, tempVeh2, customer1, customer2,

self.cm)

bestCost = self.fleet.totalCost()

else:

acceptProb = (bestCost-estimatedCost)/

currentTemp

acceptProb = math.exp(acceptProb)

randVar = random.random()

if (acceptProb>randVar):

self.fleet.InterSwitchCustomers(

tempVeh1, tempVeh2, customer1,

customer2, self.cm)

bestCost = self.fleet.totalCost()

else:

vehicles = self.fleet.vehicleList()

selVeh = random.choice(vehicles)

selCust = random.choice(self.fleet.

getAssignedCustomerstoVehicle(selVeh))

VehicleToAdd = random.choice(vehicles)

estimatedCost = self.fleet.estimateRemoveAdd

(selCust, VehicleToAdd, self.cm)

34



if estimatedCost < bestCost:

self.fleet.RemoveAdd(selCust,

VehicleToAdd, self.cm)

bestCost = self.fleet.totalCost()

else:

acceptProb = (bestCost-estimatedCost)/

currentTemp

acceptProb = math.exp(acceptProb)

randVar = random.random()

if (acceptProb>randVar):

self.fleet.RemoveAdd(selCust,

VehicleToAdd, self.cm)

bestCost = self.fleet.totalCost()

epoch += 1

currentTemp = currentTemp * coolingP

elif method == 'addremove':

while(currentTemp>minTemp):

epoch=0

while(epoch<=maxEpoch):

vehicles = self.fleet.vehicleList()

selVeh = random.choice(vehicles)

selCust = random.choice(self.fleet.

getAssignedCustomerstoVehicle(selVeh))

VehicleToAdd = random.choice(vehicles)

estimatedCost = self.fleet.estimateRemoveAdd(

selCust, VehicleToAdd, self.cm)

if estimatedCost < bestCost:

self.fleet.RemoveAdd(selCust, VehicleToAdd,

self.cm)

bestCost = self.fleet.totalCost()

else:

acceptProb = (bestCost-estimatedCost)/

currentTemp

acceptProb = math.exp(acceptProb)

randVar = random.random()

if (acceptProb>randVar):

self.fleet.RemoveAdd(selCust,

VehicleToAdd, self.cm)

bestCost = self.fleet.totalCost()

epoch += 1

currentTemp = currentTemp * coolingP

elif method == 'inter-switch':

while(currentTemp>minTemp):

epoch=0

35



while(epoch<=maxEpoch):

vehicles = self.fleet.vehicleList()

tempVeh1, tempVeh2 = random.sample(vehicles,2)

customer1 = random.choice(self.fleet.

getAssignedCustomerstoVehicle(tempVeh1))

customer2 = random.choice(self.fleet.

getAssignedCustomerstoVehicle(tempVeh2))

estimatedCost = self.fleet.

EstimateInterSwitchCost(tempVeh1, tempVeh2,

customer1, customer2, self.cm)

if estimatedCost < bestCost:

self.fleet.InterSwitchCustomers(tempVeh1,

tempVeh2, customer1, customer2, self.cm)

bestCost = self.fleet.totalCost()

else:

acceptProb = (bestCost-estimatedCost)/

currentTemp

acceptProb = math.exp(acceptProb)

randVar = random.random()

if (acceptProb>randVar):

self.fleet.InterSwitchCustomers(tempVeh

1, tempVeh2, customer1, customer2,

self.cm)

bestCost = self.fleet.totalCost()

epoch += 1

currentTemp = currentTemp * coolingP

elif method == 'intra-switch':

while(currentTemp>minTemp):

epoch=0

while(epoch<=maxEpoch):

vehicles = self.fleet.vehicleList()

tempVeh = random.choice(vehicles)

customerList = self.fleet.

getAssignedCustomerstoVehicle(tempVeh)

if len(customerList) >= 2:

customer1, customer2 = random.sample(

customerList,2)

else:

continue

estimatedCost = self.fleet.

EstimateIntraSwitchCost(tempVeh, customer1,

customer2, self.cm)

if estimatedCost < bestCost:

self.fleet.IntraSwitchCustomers(tempVeh,

36



customer1, customer2, self.cm)

bestCost = self.fleet.totalCost()

else:

acceptProb = (bestCost-estimatedCost)/

currentTemp

acceptProb = math.exp(acceptProb)

randVar = random.random()

if (acceptProb>randVar):

self.fleet.IntraSwitchCustomers(tempVeh,

customer1, customer2, self.cm)

bestCost = self.fleet.totalCost()

epoch += 1

currentTemp = currentTemp * coolingP

if isPrint:

self.fleet.printVehicleRoutes()

return self.fleet

37



A.5 AntColony.py

import numpy as np

import random

from copy import copy, deepcopy

import math

class AntColony:

def __init__(self, CustomerManager, Fleet):

self.cm = deepcopy(CustomerManager)

self.fleet = deepcopy(Fleet)

self.pheromones = dict()

def run(self, nAnt, evaporation=0.8, stop=20, alpha=1, beta=0,

fitness='g', isPrint=False):

n = self.cm.getCustomers()

C1, C2 = self.fleet.maxCapacity()

bestCost = math.inf

if fitness=='g':

FitnessFunc = self.GeometricFitness

elif fitness=='a':

FitnessFunc = self.ArithmeticFitness

else:

raise("Unknown fitness. Fitness can be 'g' or 'a'.")

customers = list(range(1,n))

allNodes = [0] + customers

arcs = [(i, j) for i in allNodes for j in allNodes if i !=

j]

for arc in arcs:

self.pheromones[arc] = 1

population = [deepcopy(self.fleet) for i in range(nAnt)]

nonImp=0

while(nonImp<stop):

improved=False

for ant in range(nAnt):

remainings = customers.copy()

38



route = [0]

while(len(remainings)>0):

if route[-1] == 0:

curNode = random.choices(remainings, weights

=[FitnessFunc(0,j,alpha,beta) for j in

remainings])[0]

route.append(curNode)

remainings.remove(curNode)

population[ant].assignVehicle(self.cm, [

curNode])

veh = population[ant].

getAssignedVehicletoCustomer(curNode)

curC1 = C1 - self.cm.get_demands(curNode)[0]

curC2 = C2 - self.cm.get_demands(curNode)[1]

else:

S = self.cm.getFeasibleSpace(curC1, curC2,

[0]+remainings)

tmpNode = random.choices(S, weights=[

FitnessFunc(curNode,j,alpha,beta) for j

in S])[0]

if tmpNode!=0:

population[ant].vehicles[veh].

addCustomer(tmpNode, curNode ,self.

cm, justAfter=True)

remainings.remove(tmpNode)

curNode = tmpNode

route.append(curNode)

curC1 = curC1 - self.cm.get_demands(curNode)

[0]

curC2 = curC2 - self.cm.get_demands(curNode)

[1]

tmpCost = population[ant].totalCost()

if bestCost > tmpCost:

self.fleet = deepcopy(population[ant])

bestCost = self.fleet.totalCost()

improved=True

for i in range(len(route)-1):

self.pheromones[route[i],route[i+1]] += 1 / math.

log(tmpCost, n)

self.pheromones.update({k: evaporation*v for k, v in

39



self.pheromones.items()})

if improved is False:

nonImp += 1

if isPrint:

self.fleet.printVehicleRoutes()

return self.fleet

def ArithmeticFitness(self, node1, node2, pAlpha, pBeta):

return self.pheromones[node1, node2]*pAlpha+(1/self.cm.get

_arc(node1,node2))*pBeta

def GeometricFitness(self, node1, node2, pAlpha, pBeta):

return self.pheromones[node1, node2]**pAlpha*(1/self.cm.

get_arc(node1,node2))**pBeta

40



A.6 AntColony_v2.py

import numpy as np

import random

from copy import copy, deepcopy

import math

class AntColony_v2:

def __init__(self, CustomerManager, Fleet):

self.cm = deepcopy(CustomerManager)

self.fleet = deepcopy(Fleet)

self.pheromones = dict()

def run(self, nAnt, evaporation=0.8, stop=20, alpha=1, beta=0,

fitness='g', isPrint=False):

n = self.cm.getCustomers()

C1, C2 = self.fleet.maxCapacity()

bestCost = math.inf

if fitness=='g':

FitnessFunc = self.GeometricFitness

elif fitness=='a':

FitnessFunc = self.ArithmeticFitness

else:

raise("Unknown fitness. Fitness can be 'g' or 'a'.")

customers = list(range(1,n))

allNodes = [0] + customers

Nodes = [(i,j) for i in allNodes for j in allNodes if i!=j

]

arcs = [(i, j) for i in Nodes for j in Nodes if i != j and

i[1]==j[0]]

for arc in arcs:

self.pheromones[arc] = 1

population = [deepcopy(self.fleet) for i in range(nAnt)]

nonImp=0

while(nonImp<stop):

improved=False

41



for ant in range(nAnt):

remainings = customers.copy()

curNode = random.choice([i for i in Nodes if i

[0]==0])

route = [curNode[0], curNode[1]]

remainings.remove(curNode[1])

population[ant].assignVehicle(self.cm, [curNode

[1]])

veh = population[ant].getAssignedVehicletoCustomer(

curNode[1])

curC1 = C1 - self.cm.get_demands(curNode[1])[0]

curC2 = C2 - self.cm.get_demands(curNode[1])[1]

while(len(remainings)>0):

if route[-1] == 0:

S = [i for i in Nodes if i[0]==0 and i[1] in

remainings]

tmpNode = random.choices(S, weights=[

FitnessFunc(curNode,j,alpha,beta) for j

in S])[0]

curNode = tmpNode

route.append(curNode[1])

remainings.remove(curNode[1])

population[ant].assignVehicle(self.cm, [

curNode[1]])

veh = population[ant].

getAssignedVehicletoCustomer(curNode[1])

curC1 = C1 - self.cm.get_demands(curNode[1])

[0]

curC2 = C2 - self.cm.get_demands(curNode[1])

[1]

else:

eligibles = self.cm.getFeasibleSpace(curC1,

curC2, [0]+remainings)

S = [i for i in Nodes if i[0]==curNode[1]

and i[1] in eligibles]

tmpNode = random.choices(S, weights=[

FitnessFunc(curNode,j,alpha,beta) for j

in S])[0]

if tmpNode[1]!=0:

population[ant].vehicles[veh].

addCustomer(tmpNode[1], tmpNode[0] ,

self.cm, justAfter=True)

remainings.remove(tmpNode[1])

curNode = tmpNode

42



route.append(curNode[1])

curC1 = curC1 - self.cm.get_demands(curNode

[1])[0]

curC2 = curC2 - self.cm.get_demands(curNode

[1])[1]

tmpCost = population[ant].totalCost()

if bestCost > tmpCost:

self.fleet = deepcopy(population[ant])

bestCost = self.fleet.totalCost()

improved=True

for i in range(len(route)-2):

self.pheromones[(route[i],route[i+1]), (route[i+1],

route[i+2])] += 1 / math.log(tmpCost, n)

self.pheromones.update({k: evaporation*v for k, v in

self.pheromones.items()})

if improved is False:

nonImp += 1

if isPrint:

self.fleet.printVehicleRoutes()

return self.fleet

def ArithmeticFitness(self, node1, node2, pAlpha, pBeta):

return self.pheromones[node1, node2]*pAlpha+(1/self.cm.get

_arc(node2[0],node2[1]))*pBeta

def GeometricFitness(self, node1, node2, pAlpha, pBeta):

return self.pheromones[node1, node2]**pAlpha*(1/self.cm.

get_arc(node2[0],node2[1]))**pBeta

43



A.7 DecomposedGenetic.py

import numpy as np

from copy import copy, deepcopy

import random

class DecomposedGenetic:

def __init__(self, CustomerManager, Fleet):

self.cm = deepcopy(CustomerManager)

self.fleet = deepcopy(Fleet)

self.clusters =dict()

self.totalClusterDemands = dict()

self.population = dict()

self.fitnessValues = dict()

def run(self, n, tournamentSize=3, eliteSize=1, stopCon = 50,

isPrint=False):

self.BuildClusters(n,tournamentSize, eliteSize, stopCon)

self.BuildRoutes()

if isPrint:

self.printClusters()

self.fleet.printVehicleRoutes()

return self.fleet

def BuildClusters(self, n, tournamentSize, eliteSize, stopCon)

:

self.population = self.GeneratePopulation(n=n)

self.fitnessValues = dict()

bestValue = 0

nonImp = 0

while(nonImp<stopCon):

for key, value in self.population.items():

self.fitnessValues[key] = self.FitnessFunction(

value)

newGeneration = dict()

sortedList = sorted(self.fitnessValues.keys(), key =

lambda x:self.fitnessValues[x], reverse = True)

for c in range(eliteSize):

newGeneration[c] = self.population[sortedList[c]]

if bestValue < self.fitnessValues[sortedList[0]]:

bestValue = self.fitnessValues[sortedList[0]]

44



nonImp = 0

for c in range(eliteSize,n):

child = self.Tournament(random.sample(list(self.

population.keys()), tournamentSize))

child = self.Mutation(child)

newGeneration[c] = child

self.population = newGeneration

nonImp += 1

for key, value in self.population.items():

self.fitnessValues[key] = self.FitnessFunction(

value)

bestSolInd = sorted(self.fitnessValues.keys(), key =

lambda x:self.fitnessValues[x], reverse = True)[0]

bestSol = self.population[bestSolInd]

for k in list(set(bestSol)):

tW=0

tV=0

itemsIn = np.where(np.isin(bestSol,k))[0]

for i in itemsIn:

tW += self.cm.get_demands(i+1)[0]

tV += self.cm.get_demands(i+1)[1]

self.totalClusterDemands[k] = [tW, tV]

for cust in range(len(bestSol)):

self.clusters[cust+1] = bestSol[cust]

def GeneratePopulation(self, n):

population = dict()

customers = [i for i in range(1, self.cm.getCustomers())]

W = self.fleet.weightCapacities()

V = self.fleet.volumeCapacities()

for i in range(n):

vehicleWeights = [0 for k in customers]

vehicleVolumes =[0 for k in customers]

population[i] = [0 for k in customers]

remainings = customers.copy()

45



while(len(remainings)>0):

tmpC = random.choice(remainings)

remainings.remove(tmpC)

vehList = list(range(1, max(population[i])+1))

np.random.shuffle(vehList)

vehList.append(max(population[i])+1)

for j in vehList:

if (vehicleWeights[j-1]+self.cm.get_demands(

tmpC)[0]<=W[-1]) \

and (vehicleVolumes[j-1]+self.cm.get_demands(

tmpC)[1]<=V[-1]):

population[i][tmpC-1]=j

vehicleWeights[j-1] += self.cm.get_demands(

tmpC)[0]

vehicleVolumes[j-1] += self.cm.get_demands(

tmpC)[1]

break

return population

def MaliyetHesapla(self, array):

vehicleCount = max(array)

fitnessValue = 0

W = self.fleet.weightCapacities()

V = self.fleet.volumeCapacities()

F = self.fleet.FixedCosts()

minItemCount = len(array)

for j in range(1,vehicleCount+1):

tW = 0

tV = 0

itemsIn = np.where(np.isin(array,j))[0]

for i in itemsIn:

tW += self.cm.get_demands(i+1)[0]

tV += self.cm.get_demands(i+1)[1]

for k in range(len(W)):

if tW<=W[k] and tV<=V[k]:

fitnessValue += F[k]

break

return fitnessValue

46



def FitnessFunction(self, array):

vehicleCount = max(array)

fitnessValue = 0

W = self.fleet.weightCapacities()

V = self.fleet.volumeCapacities()

F = self.fleet.FixedCosts()

minItemCount = len(array)

for j in range(1,vehicleCount+1):

tW = 0

tV = 0

itemsIn = np.where(np.isin(array,j))[0]

for i in itemsIn:

tW += self.cm.get_demands(i+1)[0]

tV += self.cm.get_demands(i+1)[1]

if len(itemsIn)< minItemCount:

minItemCount=len(itemsIn)

count = 1

elif len(itemsIn) == minItemCount:

count += 1

for k in range(len(W)):

if tW<=W[k] and tV<=V[k]:

fitnessValue += 1/np.log(F[k])

break

fitnessValue += np.exp(-1*(minItemCount-0.1*count))

return fitnessValue

def Tournament(self, array):

ReqFits = { k: self.fitnessValues[k] for k in array }

ind = max(ReqFits, key=ReqFits.get)

return self.population[ind].copy()

'''

def CrossOver(self, parent1, parent2):

N1 = max(parent1)

tmpN = np.ceil(N1/2).astype(int)

child = [0 for i in range(1, self.cm.getCustomers())]

for k in range(tmpN):

'''

47



def Mutation(self, chromosome):

customers = [i for i in range(1, self.cm.getCustomers())]

vehicles = [i for i in range(1, max(chromosome)+1)]

NewVeh = random.choice(vehicles)

try:

oldVeh = random.choices(vehicles, weights=[1/

chromosome.count(j) for j in vehicles])[0]

except:

print(vehicles, chromosome)

if NewVeh == oldVeh:

return chromosome

cust = random.choice(list(np.where(np.isin(chromosome,

oldVeh)))[0])

tW = 0

tV = 0

for i in np.where(np.isin(chromosome,NewVeh))[0]:

tW += self.cm.get_demands(i+1)[0]

tV += self.cm.get_demands(i+1)[1]

if tW+self.cm.get_demands(cust)[0]<= self.fleet.

maxCapacity()[0] \

and tV+self.cm.get_demands(cust)[1]<= self.fleet.

maxCapacity()[1]:

chromosome[cust] = NewVeh

if len(list(np.where(np.isin(chromosome,oldVeh)))[0]) ==

0:

chromosome = [i-1 if i>=oldVeh else i for i in

chromosome]

return chromosome

def printClusters(self):

for key in self.totalClusterDemands:

nodes = self.getCluster(key)

print("Cluster #" +str(key) + " has " + str(self.

totalClusterDemands[key][0]) + \

" kg and " + str(self.totalClusterDemands[key

][1]) + " liters of total demands, and for

customers: " \

+ str(nodes))

def getCluster(self, cluster):

48



nodes = []

for key2 in self.clusters:

if(self.clusters[key2]==cluster):

nodes.append(key2)

return nodes

def BuildRoutes(self):

for key, demand in self.totalClusterDemands.items():

customers = self.getCluster(key)

for customer in customers:

self.fleet.assignVehicle(self.cm, [customer])

arcs = self.cm.sortArcs(customers)

for arc in arcs:

if self.fleet.isLast(customers[arc[0]]) & self.

fleet.isFirst(customers[arc[1]]):

vehicle1 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[0]])

vehicle2 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[1]])

if vehicle1 != vehicle2:

self.fleet.mergeVehicles(vehicle1, vehicle2,

customers[arc[0]], self.cm, reverse=

False)

del vehicle1, vehicle2

elif self.fleet.isLast(customers[arc[1]]) & self.

fleet.isFirst(customers[arc[0]]):

vehicle1 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[1]])

vehicle2 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[0]])

if vehicle1 != vehicle2:

self.fleet.mergeVehicles(vehicle1, vehicle2,

customers[arc[1]], self.cm, reverse=

False)

del vehicle1, vehicle2

elif self.fleet.isLast(customers[arc[0]]) & self.

fleet.isLast(customers[arc[1]]):

vehicle1 = self.fleet.

49



getAssignedVehicletoCustomer(customers[arc

[0]])

vehicle2 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[1]])

if vehicle1 != vehicle2:

self.fleet.mergeVehicles(vehicle1, vehicle2,

customers[arc[0]], self.cm, reverse=

True)

del vehicle1, vehicle2

elif self.fleet.isFirst(customers[arc[0]]) & self.

fleet.isFirst(customers[arc[1]]):

vehicle1 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[0]])

vehicle2 = self.fleet.

getAssignedVehicletoCustomer(customers[arc

[1]])

if vehicle1 != vehicle2:

self.fleet.mergeVehicles(vehicle1, vehicle2,

0, self.cm, reverse=True)

del vehicle1, vehicle2

50



B Experiments

B.1 Cplex Solver

Sample Cost Time (secs)

N=20,�eet#1, sample#1 4,066.34 1000
N=20,�eet#1, sample#2 5,083.60 1000
N=20,�eet#1, sample#3 5,086.21 1000
N=20,�eet#2, sample#1 4,070.21 1000
N=20,�eet#2, sample#2 4,614.78 1000
N=20,�eet#2, sample#3 4,887.96 1000
N=20,�eet#3, sample#1 4,222.47 1000
N=20,�eet#3, sample#2 5,433.60 1000
N=20,�eet#3, sample#3 5,431.07 1000
N=50,�eet#1, sample#1 13,536.10 1000
N=50,�eet#1, sample#2 12,751.50 1000
N=50,�eet#1, sample#3 12,833.70 1000
N=50,�eet#2, sample#1 12,953.30 1000
N=50,�eet#2, sample#2 13,118.40 1000
N=50,�eet#2, sample#3 12,860.50 1000
N=50,�eet#3, sample#1 14,313.00 1000
N=50,�eet#3, sample#2 14,128.80 1000
N=50,�eet#3, sample#3 13,541.00 1000

51



B.2 Cluster-�rst-route-second

Sample (5 runs/each) Average Time Cost Benchmark gap

N=20,�eet#1, sample#1 0.4826 5864.60 44.22%
N=20,�eet#1, sample#2 0.4682 5395.00 6.13%
N=20,�eet#1, sample#3 0.4993 5338.00 4.95%
N=20,�eet#2, sample#1 0.4878 5367.20 31.87%
N=20,�eet#2, sample#2 0.4864 5656.40 22.57%
N=20,�eet#2, sample#3 0.4898 5650.40 15.60%
N=20,�eet#3, sample#1 0.4731 6164.60 46.00%
N=20,�eet#3, sample#2 0.4880 5895.00 8.49%
N=20,�eet#3, sample#3 0.5031 5838.00 7.49%
N=50,�eet#1, sample#1 112.6255 15000.60 10.82%
N=50,�eet#1, sample#2 105.8944 14952.00 17.26%
N=50,�eet#1, sample#3 106.5856 14700.00 14.54%
N=50,�eet#2, sample#1 106.8393 15319.00 18.26%
N=50,�eet#2, sample#2 107.0264 15555.20 18.58%
N=50,�eet#2, sample#3 107.1966 15365.80 19.48%
N=50,�eet#3, sample#1 106.9952 15900.60 11.09%
N=50,�eet#3, sample#2 106.7409 16352.00 15.74%
N=50,�eet#3, sample#3 106.7802 15950.00 17.79%

B.3 Closest Neighbor Heuristic

sample (5 runs/each) Average Time Cost Benchmark gap

N=20,�eet#1, sample#1 0.0553 4363 7.30%
N=20,�eet#1, sample#2 0.0415 5162.2 1.55%
N=20,�eet#1, sample#3 0.0529 5395 6.07%
N=20,�eet#2, sample#1 0.0636 4242.8 4.24%
N=20,�eet#2, sample#2 0.0529 5287.6 14.58%
N=20,�eet#2, sample#3 0.0686 5269.2 7.80%
N=20,�eet#3, sample#1 0.0537 4763 12.80%
N=20,�eet#3, sample#2 0.0414 5512.2 1.45%
N=20,�eet#3, sample#3 0.053 5895 8.54%
N=50,�eet#1, sample#1 0.1956 13871.4 2.48%
N=50,�eet#1, sample#2 0.203 12998 1.93%
N=50,�eet#1, sample#3 0.1869 12999 1.29%
N=50,�eet#2, sample#1 0.2387 13325.8 2.88%
N=50,�eet#2, sample#2 0.2306 12610.8 -3.87%
N=50,�eet#2, sample#3 0.2292 12567.4 -2.28%
N=50,�eet#3, sample#1 0.1938 15021.4 4.95%
N=50,�eet#3, sample#2 0.204 14198 0.49%
N=50,�eet#3, sample#3 0.1906 14199 4.86%

52



B.4 First Improvement Heuristic

Table B4.1: Sample: N=20,�eet#1, sample#1 over 5 runs
initial stopping method mean(time) mean(cost) min(cost) mean(gap) best(gap)

Alg.1a 15 mix 0.4943 4894.51 4830.4 20.37% 18.79%
Alg.1a 15 add/remove 0.2674 4689.64 4320.2 15.33% 6.24%
Alg.1a 15 Inter-switch 1.0427 4961.84 4841.6 22.02% 19.07%
Alg.1a 15 Intra-switch 0.0005 5863.8 5861.6 44.20% 44.15%
Alg.1a 30 mix 1.0325 4889.32 4343.6 20.24% 6.82%
Alg.1a 30 add/remove 0.3001 4589.8 4329.6 12.87% 6.47%
Alg.1a 30 Inter-switch 1.7851 5045.36 4822.4 24.08% 18.59%
Alg.1a 30 Intra-switch 0.0004 5864.4 5863.6 44.22% 44.20%
Alg.1b 15 mix 0.4014 4292.4 4098 5.56% 0.78%
Alg.1b 15 add/remove 0.0668 4358.4 4357 7.18% 7.15%
Alg.1b 15 Inter-switch 1.0817 4336.4 4317 6.64% 6.16%
Alg.1b 15 Intra-switch 0.0006 4363 4363 7.30% 7.30%
Alg.1b 30 mix 1.3396 4275.28 4090.4 5.14% 0.59%
Alg.1b 30 add/remove 0.1444 4351.2 4342 7.01% 6.78%
Alg.1b 30 Inter-switch 1.96 4336.2 4332 6.64% 6.53%
Alg.1b 30 Intra-switch 0.0007 4363 4363 7.30% 7.30%

Table B4.2: Sample: N=20,�eet#2, sample#1 over 5 runs
initial stopping method mean(time) mean(cost) min(cost) mean(gap) best(gap)

Alg. 1a 15 mix 1.2876 4139.00 3648.40 1.69% -10.36%
Alg. 1a 15 add/remove 0.2944 4190.28 3823.00 2.95% -6.07%
Alg. 1a 15 Inter-switch 2.0271 4602.44 4576.20 13.08% 12.43%
Alg. 1a 15 Intra-switch 0.0006 5367.20 5367.20 31.87% 31.87%
Alg. 1a 30 mix 2.0347 4179.96 3825.80 2.70% -6.00%
Alg. 1a 30 add/remove 0.3812 4205.20 3835.20 3.32% -5.77%
Alg. 1a 30 Inter-switch 2.5828 4400.32 4328.20 8.11% 6.34%
Alg. 1a 30 Intra-switch 0.0004 5367.00 5366.20 31.86% 31.84%
Alg. 1b 15 mix 2.233 3920.44 3885.00 -3.68% -4.55%
Alg. 1b 15 add/remove 0.0554 4006.04 3987.80 -1.58% -2.02%
Alg. 1b 15 Inter-switch 2.6058 3926.72 3890.80 -3.53% -4.41%
Alg. 1b 15 Intra-switch 0.0006 4241.12 4240.00 4.20% 4.17%
Alg. 1b 30 mix 2.4511 3880.80 3855.40 -4.65% -5.28%
Alg. 1b 30 add/remove 0.108 4012.12 3987.80 -1.43% -2.02%
Alg. 1b 30 Inter-switch 4.4044 3958.96 3918.40 -2.73% -3.73%
Alg. 1b 30 Intra-switch 0.0006 4241.40 4240.00 4.21% 4.17%

53



Table B4.3: Sample: N=50,�eet#2, sample#1 over 5 runs
initial stopping method mean(time) mean(cost) min(cost) mean(gap) best(gap)

Alg. 1a 15 mix 2.5332 14299.00 14059.20 10.39% 8.54%
Alg. 1a 15 add/remove 1.0869 14321.68 14004.20 10.56% 8.11%
Alg. 1a 15 Inter-switch 3.2086 14396.44 14104.60 11.14% 8.89%
Alg. 1a 15 Intra-switch 0.0009 15316.76 15310.60 18.25% 18.20%
Alg. 1a 30 mix 4.2318 14141.92 13547.80 9.18% 4.59%
Alg. 1a 30 add/remove 2.1097 14199.96 13813.80 9.62% 6.64%
Alg. 1a 30 Inter-switch 5.6822 14292.64 14140.80 10.34% 9.17%
Alg. 1a 30 Intra-switch 0.0007 15316.76 15310.60 18.25% 18.20%
Alg. 1b 15 mix 1.5088 12945.4 12656.6 -0.06% -2.29%
Alg. 1b 15 add/remove 0.4015 12983.16 12793.4 0.23% -1.23%
Alg. 1b 15 Inter-switch 1.1265 13325.8 13325.8 2.88% 2.88%
Alg. 1b 15 Intra-switch 0.0008 13323 13318.8 2.85% 2.82%
Alg. 1b 30 mix 5.5605 12759.2 12662.8 -1.50% -2.24%
Alg. 1b 30 add/remove 1.1424 13009.96 12945.6 0.44% -0.06%
Alg. 1b 30 Inter-switch 2.4393 13325.8 13325.8 2.88% 2.88%
Alg. 1b 30 Intra-switch 0.0008 13325.8 13325.8 2.88% 2.88%

B.5 Best Improvement Heuristic

Table B5.1: Sample: N=20, �eet#1, sample#1 over 5 runs
initial stopping method mean(time) mean(cost) min(cost) mean(gap) best(gap)

Alg. 1a 15 mix 0.6482 4781.64 4604.20 17.59% 13.23%
Alg. 1a 15 add/remove 0.1982 4438.40 4320.60 9.15% 6.25%
Alg. 1a 15 Inter-switch 1.1773 5167.24 5089.20 27.07% 25.15%
Alg. 1a 15 Intra-switch 0.0053 5860.60 5860.60 44.12% 44.12%
Alg. 1a 30 mix 1.1225 4639.84 4315.40 14.10% 6.12%
Alg. 1a 30 add/remove 0.3523 4675.28 4325.00 14.98% 6.36%
Alg. 1a 30 Inter-switch 1.5816 5101.00 5089.20 25.44% 25.15%
Alg. 1a 30 Intra-switch 0.0059 5860.60 5860.60 44.12% 44.12%
Alg. 1b 15 mix 0.7519 4280.2 4098 5.26% 0.78%
Alg. 1b 15 add/remove 0.0727 4357.6 4357 7.16% 7.15%
Alg. 1b 15 Inter-switch 1.2681 4341.8 4341 6.77% 6.75%
Alg. 1b 15 Intra-switch 0.006 4363 4363 7.30% 7.30%
Alg. 1b 30 mix 1.2033 4227.6 4098 3.97% 0.78%
Alg. 1b 30 add/remove 0.1387 4350 4342 6.98% 6.78%
Alg. 1b 30 Inter-switch 2.0967 4341.2 4341 6.76% 6.75%
Alg. 1b 30 Intra-switch 0.0121 4363 4363 7.30% 7.30%

54



Table B5.2: Sample: N=20, �eet#2, sample#1 over 5 runs
initial stopping method mean(time) mean(cost) min(cost) mean(gap) best(gap)

Alg. 1a 15 mix 1.2417 4138.16 3835.40 1.67% -5.77%
Alg. 1a 15 add/remove 0.2588 4282.48 4098.80 5.22% 0.70%
Alg. 1a 15 Inter-switch 1.9348 4484.08 4346.20 10.17% 6.78%
Alg. 1a 15 Intra-switch 0.0078 5366.20 5366.20 31.84% 31.84%
Alg. 1a 30 mix 1.6518 4320.40 3814.00 6.15% -6.29%
Alg. 1a 30 add/remove 0.5140 4222.92 3821.40 3.75% -6.11%
Alg. 1a 30 Inter-switch 2.5085 4443.88 4350.40 9.18% 6.88%
Alg. 1a 30 Intra-switch 0.0099 5366.20 5366.20 31.84% 31.84%
Alg. 1b 15 mix 2.1633 3887.8 3851.2 -4.48% -5.38%
Alg. 1b 15 add/remove 0.0831 3999.96 3987.8 -1.73% -2.02%
Alg. 1b 15 Inter-switch 2.5641 3922.16 3918.4 -3.64% -3.73%
Alg. 1b 15 Intra-switch 0.0247 4185.4 4185.4 2.83% 2.83%
Alg. 1b 30 mix 2.8736 3876.84 3858.2 -4.75% -5.21%
Alg. 1b 30 add/remove 0.1492 3993.88 3987.8 -1.88% -2.02%
Alg. 1b 30 Inter-switch 5.4419 3924.04 3918.4 -3.59% -3.73%
Alg. 1b 30 Intra-switch 0.0499 4185.4 4185.4 2.83% 2.83%

Table B5.3: Sample: N=50,�eet#2, sample#1 over 5 runs
initial stopping method mean(time) mean(cost) min(cost) mean(gap) best(gap)

Alg. 1a 15 mix 2.0725 14121.68 13436.20 9.02% 3.73%
Alg. 1a 15 add/remove 0.8322 14484.16 14269.60 11.82% 10.16%
Alg. 1a 15 Inter-switch 3.3417 14475.64 14324.40 11.75% 10.58%
Alg. 1a 15 Intra-switch 0.0966 15294.36 15292.40 18.07% 18.06%
Alg. 1a 30 mix 3.7301 14032.80 13488.00 8.33% 4.13%
Alg. 1a 30 add/remove 1.8977 14185.80 13532.80 9.51% 4.47%
Alg. 1a 30 Inter-switch 5.3971 14403.68 14304.20 11.20% 10.43%
Alg. 1a 30 Intra-switch 0.0171 15292.40 15292.40 18.06% 18.06%
Alg. 1b 15 mix 2.0641 13073.32 12954.2 0.93% 0.01%
Alg. 1b 15 add/remove 0.3924 13038.76 12983.4 0.66% 0.23%
Alg. 1b 15 Inter-switch 1.0873 13325.8 13325.8 2.88% 2.88%
Alg. 1b 15 Intra-switch 0.0186 13261.4 13246 2.38% 2.26%
Alg. 1b 30 mix 6.5069 12786.2 12638.6 -1.29% -2.43%
Alg. 1b 30 add/remove 1.0082 12887 12776.6 -0.51% -1.36%
Alg. 1b 30 Inter-switch 2.9829 13325.8 13325.8 2.88% 2.88%
Alg. 1b 30 Intra-switch 0.0477 13245.16 13244.6 2.25% 2.25%

55



B.6 Simulated Annealing

Table B6.1: Sample: N=20, �eet#1, sample#1 over 5 runs
initial cooling Epoch method mean(time) mean(cost) min(cost) mean(gap) best(gap)

Alg. 1b 0.7 5 mix 0.2651 4369.24 4165.2 7.35% 2.33%
Alg. 1b 0.7 5 add/remove 0.1872 4338.4 4111 6.59% 1.00%
Alg. 1b 0.7 5 Inter-switch 0.5812 4427.6 4381 8.78% 7.64%
Alg. 1b 0.7 5 Intra-switch 0.01 4385.6 4371 7.75% 7.39%
Alg. 1b 0.7 10 mix 0.8875 4192.6 4133 3.01% 1.54%
Alg. 1b 0.7 10 add/remove 0.6276 4202.48 4190.4 3.25% 2.95%
Alg. 1b 0.7 10 Inter-switch 1.9075 4254.88 4142.6 4.54% 1.78%
Alg. 1b 0.7 10 Intra-switch 0.0322 4370.8 4363 7.39% 7.19%
Alg. 1b 0.9 5 mix 0.4454 4412.4 4396 8.41% 8.00%
Alg. 1b 0.9 5 add/remove 0.3518 4330.56 4166.2 6.40% 2.36%
Alg. 1b 0.9 5 Inter-switch 1.0374 4397.6 4369 8.04% 7.34%
Alg. 1b 0.9 5 Intra-switch 0.0182 4369 4363 7.34% 7.19%
Alg. 1b 0.9 10 mix 1.6216 4145 4103.4 1.84% 0.82%
Alg. 1b 0.9 10 add/remove 1.143 4243.88 4197.8 4.27% 3.13%
Alg. 1b 0.9 10 Inter-switch 3.6154 4152.12 4114.6 2.01% 1.09%
Alg. 1b 0.9 10 Intra-switch 0.06 4372 4363 7.41% 7.19%

Table B6.2: Sample: N=20,�eet#2, sample#1 over 5 runs
initial cooling Epoch method mean(time) mean(cost) min(cost) mean(gap) best(gap)

Alg. 1b 0.7 5 mix 0.5222 4055.32 4005.8 -0.37% -1.58%
Alg. 1b 0.7 5 add/remove 0.375 4062.24 4031.6 -0.20% -0.95%
Alg. 1b 0.7 5 Inter-switch 0.9139 4079.48 4045.6 0.23% -0.60%
Alg. 1b 0.7 5 Intra-switch 0.0115 4235.24 4199.4 4.05% 3.17%
Alg. 1b 0.7 10 mix 1.2675 4006.56 3995 -1.56% -1.85%
Alg. 1b 0.7 10 add/remove 0.9415 4057.24 4004.8 -0.32% -1.61%
Alg. 1b 0.7 10 Inter-switch 2.8021 4018.28 3965.2 -1.28% -2.58%
Alg. 1b 0.7 10 Intra-switch 0.0368 4192.96 4188.2 3.02% 2.90%
Alg. 1b 0.9 5 mix 0.7055 4016.32 3960.2 -1.32% -2.70%
Alg. 1b 0.9 5 add/remove 0.4963 4039.16 3923.2 -0.76% -3.61%
Alg. 1b 0.9 5 Inter-switch 1.5671 4060.92 4043.4 -0.23% -0.66%
Alg. 1b 0.9 5 Intra-switch 0.0237 4214.24 4193.8 3.54% 3.04%
Alg. 1b 0.9 10 mix 2.4754 3955.32 3919.4 -2.82% -3.71%
Alg. 1b 0.9 10 add/remove 1.7746 4075.72 4019 0.14% -1.26%
Alg. 1b 0.9 10 Inter-switch 5.0127 4027.12 3979.6 -1.06% -2.23%
Alg. 1b 0.9 10 Intra-switch 0.0665 4185.4 4185.4 2.83% 2.83%

56



Table B6.3: Sample: N=50,�eet#2, sample#1 over 5 runs
initial cooling Epoch method mean(time) mean(cost) min(cost) mean(gap) best(gap)

Alg. 1b 0.7 5 mix 0.4909 13436.76 13232 3.73% 2.15%
Alg. 1b 0.7 5 add/remove 0.3634 13100.4 12867.4 1.14% -0.66%
Alg. 1b 0.7 5 Inter-switch 1.2217 13711.6 13526.8 5.85% 4.43%
Alg. 1b 0.7 5 Intra-switch 0.0182 13404.76 13367.8 3.49% 3.20%
Alg. 1b 0.7 10 mix 1.7455 13265.32 13060 2.41% 0.82%
Alg. 1b 0.7 10 add/remove 1.1849 13189.28 13063.2 1.82% 0.85%
Alg. 1b 0.7 10 Inter-switch 4.1582 13713.08 13447.6 5.87% 3.82%
Alg. 1b 0.7 10 Intra-switch 0.0434 13269.8 13261.4 2.44% 2.38%
Alg. 1b 0.9 5 mix 0.9844 13203.4 13045 1.93% 0.71%
Alg. 1b 0.9 5 add/remove 0.6452 13147.88 13005.8 1.50% 0.41%
Alg. 1b 0.9 5 Inter-switch 2.2004 13680.32 13415.8 5.61% 3.57%
Alg. 1b 0.9 5 Intra-switch 0.0245 13330.28 13309 2.91% 2.75%
Alg. 1b 0.9 10 mix 3.2227 13177.44 13019.4 1.73% 0.51%
Alg. 1b 0.9 10 add/remove 2.3013 13301.56 13226.2 2.69% 2.11%
Alg. 1b 0.9 10 Inter-switch 7.694 13604.76 13337 5.03% 2.96%
Alg. 1b 0.9 10 Intra-switch 0.0809 13265.04 13246 2.41% 2.26%

B.7 Node-to-node Ant Colony

Table B7.1: N=20, �eet#1, sample#1 over 5 runs

α β weights mean(time) mean(cost) min(cost) mean(gap) best(gap)

1 1 Arithmetic 8.3672 4386.07 4251 7.86% 4.54%
1 0 Arithmetic 9.1785 4444.53 4272.6 9.30% 5.07%
1.5 1 Geometric 9.1406 4641.4 4434 14.14% 9.04%
1.5 1 Arithmetic 8.0676 4491.53 4348.6 10.46% 6.94%
1.5 1.5 Geometric 9.3343 4686.6 4182.8 15.25% 2.86%

Table B7.2: Sample: N=20,�eet#2, sample#1 over 5 runs

α β weights mean(time) mean(cost) min(cost) mean(gap) best(gap)

1 1 Arithmetic 10.1033 4416.33 4200.6 8.50% 3.20%
1 0 Arithmetic 10.5056 4331.47 4172.4 6.42% 2.51%
1.5 1 Geometric 12.3064 4357.67 4081.8 7.06% 0.28%
1.5 1 Arithmetic 10.5825 4326.07 4205.4 6.29% 3.32%
1.5 1.5 Geometric 12.2199 4514.13 4385.6 10.91% 7.75%

Table B7.3: Sample: N=50,feet#2, sample#1 over 5 runs

α β weights mean(time) mean(cost) min(cost) mean(gap) best(gap)

1 1 Arithmetic 32.4286 14406.53 14213.6 11.22% 9.73%
1 0 Arithmetic 34.6678 14224 14058 9.81% 8.53%
1.5 1 Geometric 36.2459 14114.27 13780.2 8.96% 6.38%
1.5 1 Arithmetic 36.3392 14467.07 14281.4 11.69% 10.25%
1.5 1.5 Geometric 35.1925 13875.4 13612 7.12% 5.09%

57



B.8 Couple-to-couple Ant Colony

Table B8.1: N=20, �eet#1, sample#1 over 5 runs

α β weights mean(time) mean(cost) min(cost) mean(gap) best(gap)

1 1 Arithmetic 8.355 4573.33 4552 12.47% 11.94%
1 0 Arithmetic 8.5601 4441.6 4300.8 9.23% 5.77%
1.5 1 Geometric 8.8176 4465.33 4448 9.81% 9.39%
1.5 1 Arithmetic 7.7592 4486.6 4337.8 10.34% 6.68%
1.5 1.5 Geometric 8.8894 4371.07 4228.2 7.49% 3.98%

Table B8.2: Sample: N=20,�eet#2, sample#1 over 5 runs

α β weights mean(time) mean(cost) min(cost) mean(gap) best(gap)

1 1 Arithmetic 9.5268 4339.73 4192 6.62% 2.99%
1 0 Arithmetic 9.6801 4335.87 4153 6.53% 2.03%
1.5 1 Geometric 10.6295 4294.27 4087.8 5.50% 0.43%
1.5 1 Arithmetic 9.8966 4215.53 4177 3.57% 2.62%
1.5 1.5 Geometric 11.0857 4340.6 4128.8 6.64% 1.44%

Table B8.3: N=50,feet#2, sample#1 over 5 runs

α β weights mean(time) mean(cost) min(cost) mean(gap) best(gap)

1 1 Arithmetic 39.1198 14414.2 14324.2 11.28% 10.58%
1 0 Arithmetic 39.8126 14375.13 14293.4 10.98% 10.35%
1.5 1 Geometric 41.4604 14201.2 14014.2 9.63% 8.19%
1.5 1 Arithmetic 41.4933 14473.07 14384.6 11.73% 11.05%
1.5 1.5 Geometric 40.5064 14162.6 14099.6 9.34% 8.85%

58



References

[1] Roberto Baldacci, Maria Battarra, and Daniele Vigo. Routing a Heteroge-
neous Fleet of Vehicles. 2008.

[2] Bruce Golden, Arjang Assad, Larry Levy, and FilipGheysens. The �eet
size and mix vehicle routing problem. 1984.

[3] Gerhard Hiermann, Jakob Puchinger, Stefan Ropke, and Richard F Hartl.
The electric �eet size and mix vehicle routing problem with time windows
and recharging stations. 2016.

[4] Shaohui Hong, Defu Zhang, Hoong Chuin Lau, XiangXiang Zeng, and Yain-
Whar Si. A hybrid heuristic algorithm for the 2d variable-sized bin packing
problem. 2014.

[5] F-H Liu and S-Y Shen. The �eet size and mix vehicle routing problem with
time windows. 1999.

[6] Andrea Lodi, Silvano Martello, and Daniele Vigo. Heuristic and meta-
heuristic approaches for a class of two-dimensional bin packing problems.
1999.

[7] Artur Pessoa, Ruslan Sadykov, and Eduardo Uchoa. Solving bin packing
problems using vrpsolver models. 2021.

[8] Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric
vehicle-routing problem with time windows and recharging stations. 2014.

[9] Paolo Toth and Daniele Vigo. Vehicle Routing: Problems, Methods, and
Applications. second edition, 2014.

[10] Lijun Wei, Wee-Chong Oon, Wenbin Zhu, and Andrew Lim. A goal-driven
approach to the 2d bin packing and variable-sized bin packing problems.
2013.

59


